Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Interpretation of thermal desorption spectra of hydrogen from aluminum using numerical simulation

Ebihara, Kenichi; Yamaguchi, Masatake; Tsuru, Tomohito; Itakura, Mitsuhiro

Keikinzoku, 68(11), p.596 - 602, 2018/11

Hydrogen embrittlement (HE) is considered as one cause of stress corrosion cracking. HE is a serious problem in the development of high strength aluminum alloy as with steels. For understanding HE, it is inevitable to know hydrogen trapping states in the alloys and it can be identified using thermal desorption spectrometry of H. In this study, we numerically simulated thermal desorption spectra of hydrogen in aluminum for a cylindrical and a plate specimens and interpreted the desorption peaks included in them on the basis of the trap site concentration and the trap energy. As a result, we found that the peak at the lowest-temperature side can result from grain boundaries and confirmed that the reported interpretation for other peaks is reasonable. We also obtained the result showing the possibility that the trap site concentration of defects changes during heating the specimens. This result may give a suggestion for the interpretation of temperature desorption spectra of steels.

Journal Articles

Effects of surface modification by ion irradiation on the electrochemical hydrogen absorption rate of Pd

Abe, Hiroshi; Morimoto, Ryo*; Sato, Fumiatsu*; Azuma, Yorito*; Uchida, Hirohisa*

Journal of Alloys and Compounds, 404-406, p.288 - 292, 2005/12

 Times Cited Count:7 Percentile:51.6(Chemistry, Physical)

The effect of ion irradiation on the rate of electrochemical hydriding rate of palladium (Pd) was investigated. In this study, ion irradiation onto the Pd surface was made with H$$^{+}$$, He$$^{+}$$, Ar$$^{+}$$ and N$$^{+}$$ in the acceleration energy range from 30 to 350 keV, and in the ion dose up to 1 $$times$$ 10$$^{17}$$ cm$$^{-2}$$. As the ion dose was increased, the initial rate of hydriding of Pd was increased. The ion irradiatiion treatment of the surface of a metal induces high concentrations of vacancy. The increased hydriding rate may be caused by the induction of high concentration of vacancy whichi traps hydrogen atoms, and this seems to accelerate the rates of hydride nucleation and growth in the surface. The ion irradiation was found as an effective way to enhance the rate of the initial activation of Pd in the electrochemical hydriding process.

2 (Records 1-2 displayed on this page)
  • 1